博客
关于我
HDFS
阅读量:180 次
发布时间:2019-02-28

本文共 586 字,大约阅读时间需要 1 分钟。

随着全球经济的不断发展,大数据时代早已悄悄到来,而Hadoop又是大数据环境的基础,想入门大数据行业首先需要了解Hadoop的知识。2017年年初apache发行了Hadoop3.0,也意味着一直有一群人在对Hadoop不断的做优化,不仅如此,各个Hadoop的商业版本也有好多公司正在使用,这也印证了它的商业价值。

读者可以通过阅读“一文读懂Hadoop”系列文章,对Hadoop技术有个全面的了解,它涵盖了Hadoop官网的所有知识点,并且通俗易懂,英文不好的读者完全可以通过阅读此篇文章了解Hadoop。

本期独家内容“一文读懂Hadoop”系列文章将根据先介绍Hadoop,继而分别详细介绍HDFS、MAPREDUCE、YARN的所有知识点的框架,分为四期内容在近几天推送。敬请关注后续内容。

本期内容为大家详解HDFS,由于字数限制,本文分为上下两篇分别在头条和二条推送。

1. HDFS优缺点

1.1 优点

1.1.1 高容错性

可以由数百或数千个服务器机器组成,每个服务器机器存储文件系统数据的一部分;

数据自动保存多个副本;

副本丢失后检测故障快速,自动恢复。

1.1.2 适合批处理

移动计算而非数据;

数据位置暴露给计算框架;

数据访问的高吞吐量;

运行的应用程序对其数据集进行流式访问。

1.1.3 适合大数据处理

典型文件大小为千兆字节到太字节;<

转载地址:http://xtmn.baihongyu.com/

你可能感兴趣的文章
MySQL分层架构与运行机制详解
查看>>
MySQL分组查询
查看>>
mysql备份
查看>>
mysql大批量删除(修改)The total number of locks exceeds the lock table size 错误的解决办法
查看>>
mysql存储登录_php调用mysql存储过程会员登录验证实例分析
查看>>
MySQL学习-group by和having
查看>>
Mysql学习总结(38)——21条MySql性能优化经验
查看>>
Mysql工作笔记006---Mysql服务器磁盘爆满了_java.sql.SQLException: Error writing file ‘tmp/MYfXO41p‘
查看>>
Mysql数据库 InnoDB存储引擎中Master Thread的执行流程
查看>>
Mysql数据库B-Tree索引
查看>>
mysql数据库io空闲_mysql数据库磁盘io高的排查
查看>>
MYSQL数据库下载安装(Windows版本)
查看>>
MySQL数据库与Informix:能否创建同名表?
查看>>
MySQL数据库操作
查看>>
Mysql数据库的条件查询语句
查看>>
MYSQL数据库简单的状态检查(show processlist)
查看>>
MYSQL数据库进阶操作
查看>>
MySQL数据库高并发优化配置
查看>>
mysql数据恢复
查看>>
MySQL数据的主从复制、半同步复制和主主复制详解
查看>>